Quantum Control Architecture -- Bridging the Gap between Quantum Software and Hardware

  报告时间: 2019年10月14日(周一) 上午 10:00—12:00

  报告地点: 计算所 446室

  主 讲 人 :付祥 (国防科技大学 助理研究员)

  报告摘要:

  Quantum computers promise to solve problems intractable by classical computers. Different to the von-Neumman architecture used by classical computers, (most) quantum computers adopt the process-in-memory paradigm, where quantum bits (qubits) are the place both for processing and storage. Due to the heterogeneity between quantum storage & processing (in quantum states) and quantum control (with classical analog signals), a quantum computer requires a dedicated control system apart from the quantum processor allocating qubits.

  Addressing the flexibility and scalability issues of the quantum control system as observed in experiments, we proposed an executable quantum instruction set architecture (QISA), named eQASM, which can be supported by our proposed QuMA-series control microarchitecture. eQASM/QuMA can support the widely-used "classical control, quantum data" paradigm, and is highlighted by a quantum-classical hybrid programming model, configurable QISA at compile time, comprehensive program flow control, precise timing control, etc.

  Driven by the difficulties of using current quantum programming languages and compilers to generate eQASM code, we started developing a quantum programming language targeting near-term devices (named Qingo) in collaboration with multiple universities/institutes such as Peng Cheng Lab. Before ending this talk, I will give a short introduction to Qingo with its compiler, which will be open-source around Jan. 2020.

  主讲人简介:

  Xiang Fu is an assistant professor in Quantum Computing Lab, Institute for Quantum Information and State Key Laboratory of High-Performance Computing (HPCL), National University of Defense Technology (NUDT), Changsha, Hunan, China. He got his bachelor's degree from the Department of Electronic Engineering at Tsinghua University in 2011, and master's degree from College of Computer, NUDT in 2013. He started doctoral research on quantum control (micro)architecture at QuTech, Delft University of Technology in 2014 and got his Ph.D. in 2018. He is honored by the best paper award of MICRO 2017 and Top Picks 2017. His current research interest include quantum computer architecture, and quantum programming language and compiling.

附件:
恒赢娱乐平台下载 澳门老葡京是不是真的 万达国际娱乐官网 申博太阳城备用网址登入 申博太阳城管理
www.4323.com 马牌娱乐城网址 百盛亚洲国际娱乐城 澳门葡京赌场线上娱乐 如意娱乐平台注册
玩牛牛游戏怎么玩 百万发棋牌洗码 沙龙得意彩金 信誉网上现金棋牌 万博娱乐平台
太阳城申博138最新客服 云顶娱乐场怎么赢钱 pt平台申博开户 久久棋牌测评网 亚洲城电子洗码